-->

How to Setup a Virtualization Lab (I)


Now that I have concluded a general overview of most of the theory related to High Availability and Virtualization it is time to start testing some of those concepts and see them in action.

My goal for the next posts is to produce a series of tutorials showing how anyone can easily install a handful of virtual machines and be able to explore the wonderful possibilities provided by this technology. I will be using an old laptop powered by a Turion 64 X2 CPU with a 250 Gb SSD HD and 4 Gb of RAM combined with a desktop running Windows 7 Ultimate on a Athlon 64 X2 4800+ with 4 Gb of RAM and lots a free disk space scattered through 3 SATA hard drives.

Virtual Machines Creation


I will not go through the details of OS installation because I am assuming the ones reading these tutorials are way passed that.

I started by installing a fresh copy of Windows Server 2008 R2 SP1 Standard on a secondary partition in my laptop.  Once I was done with the installation of all the available updates from Windows Update and with OS activation, I was ready to add the Hyper-V role in order to be able to install the virtual machines. To do this I just went into Server Manager/Roles, started the Add Roles Wizard, selected Hyper-V and followed the procedures. Nothing special so far, right?

Hyper-V Role

Note: All the pictures are clickable and will open a larger version in a separate window.

Scientists replicate brain using a chip

 
Scientists are getting closer to the dream of creating computer systems that can replicate the brain. Researchers at the Massachusetts Institute of Technology (MIT) have designed a computer chip that mimics how the brain's neurons adapt in response to new information. Such chips could eventually enable communication between artificially created body parts and the brain and it could also pave the way for artificial intelligence devices.

There are about 100 billion neurons in the brain, each of which forms synapses - the connections between neurons that allow information to flow - with many other neurons. This process is known as plasticity and is believed to underpin many brain functions, such as learning and memory.

Brain

Bacteria Inspire Robotics


Researchers at Tel Aviv University have developed a computational model that better explains how bacteria move in a swarm -- and this model can be applied to human-made technologies, including computers, artificial intelligence, and robotics. The team of scientists has discovered how bacteria collectively gather information about their environment and find an optimal path to growth, even in the most complex terrains.

Studying the principles of bacteria navigation will allow researchers to design a new generation of smart robots that can form intelligent swarms, aid in the development of medical micro-robots used to diagnose or distribute medications in the body, or "de-code" systems used in social networks and throughout the Internet to gather information on consumer behaviors.

Bacteria
Simulated interacting agents collectively navigate towards a target (credit: American Friends of Tel Aviv University)