The Future of Computers - Chemical and Biochemical nanocomputers

Chemical Nanocomputer

In general terms a chemical computer is one that processes information in by making and breaking chemical bonds and it stores logic states or information in the resulting chemical (i.e., molecular) structures. In a chemical nanocomputer computing is based on chemical reactions (bond breaking and forming) and the inputs are encoded in the molecular structure of the reactants and outputs can be extracted from the structure of the products meaning that in these computers the interaction between different chemicals and their structures is used to store and process information.


These computing operations would be performed selectively among molecules taken just a few at a time in volumes only a few nanometers on a side so, in order to create a chemical nanocomputer, engineers need to be able to control individual atoms and molecules so that these atoms and molecules can be made to perform controllable calculations and data storage tasks. The development of a true chemical nanocomputer will likely proceed along lines similar to genetic engineering.


Biochemical nanocomputers

Both chemical and biochemical nanocomputers would store and process information in terms of chemical structures and interactions. Proponents of biochemically based computers can point to an “existence proof” for them in the commonplace activities of humans and other animals with multicellular nervous systems. So biochemical nanocomputers already exist in nature; they are manifest in all living things. But these systems are largely uncontrollable by humans and that makes artificial fabrication or implementation of this category of “natural” biochemically based computers seems far off because the mechanisms for animal brains and nervous systems still are poorly understood. We cannot, for example, program a tree to calculate the digits of pi , or program an antibody to fight a particular disease (although medical science has come close to this ideal in the formulation of vaccines, antibiotics, and antiviral medications)..

DNA nanocomputer

In 1994, Leonard Adelman took a giant step towards a different kind of chemical or artificial biochemical computer when he used fragments of DNA to compute the solution to a complex graph theory problem.

DNA computer

Using the tools of biochemistry, Adleman was able to extract the correct answer to the graph theory problem out of the many random paths represented by the product DNA strands. Like a computer with many processors, this type of DNA computer is able to consider many solutions to a problem simultaneously. Moreover, the DNA strands employed in such a calculation (approximately 1017) are many orders of magnitude greater in number and more densely packed than the processors in today's most massively parallel electronic supercomputer. As a result of the Adleman work, the chemical nanocomputer is the only one of the aforementioned four types to have been demonstrated for an actual calculation.

These computers use DNA to store information and perform complex calculations. DNA has a vast amount of storage capacity that enables it to hold the complex blueprints of living organisms. The storage capacity of a single gram of DNA can hold as much information as one trillion compact discs.


farnandazax said...

ซื้อ antivirus
I am thankful to this blog for assisting me. I added some specified clues which are really important for me to use them in my writing skill. Really helpful stuff made by this blog.
ซื้อ antivirus

nick jones said...

Thank you for the information,very good blog..
Server and Storage Solutions
Server and storage

rahul yadav said...

Hey there,
Nice blog
check out our blogs
seo marketing companies in delhi